Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Int J Dev Neurosci ; 84(2): 122-133, 2024 Apr.
Article En | MEDLINE | ID: mdl-38238938

Dietary polyphenol consumption is associated with a wide range of neuroprotective effects by improving mitochondrial function and signaling. Consequently, the use of polyphenol supplementation has been investigated as an approach to prevent neurodevelopmental diseases during gestation; however, the data obtained are still very inconclusive, mostly because of the difficulty of choosing the correct doses and period of administration to properly prevent neurodegenerative diseases without undermining normal brain development. Thus, we aimed to evaluate the effect of naringin supplementation during the third week of gestation on mitochondrial health and signaling in the cerebellum of 21-day-old offspring. The offspring born to naringin-supplemented dams displayed higher mitochondrial mass, membrane potential, and superoxide content in the cerebellum without protein oxidative damage. Such alterations were associated with dynamin-related protein 1 (DRP1) and phosphorylated AKT (p-AKT) downregulation, whereas the sirtuin 3 (SIRT3) levels were strongly upregulated. Our findings suggest that high dietary polyphenol supplementation during gestation may reduce mitochondrial fission and affect mitochondrial dynamics even 3 weeks after delivery via SIRT3 and p-AKT. Although the offspring born to naringin dams did not present neurobehavioral defects, the mitochondrial alterations elicited by naringin may potentially interfere during neurodevelopment and need to be further investigated.


Flavanones , Sirtuin 3 , Rats , Animals , Female , Pregnancy , Rats, Wistar , Sirtuin 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cerebellum/metabolism , Dietary Supplements , Mitochondria/metabolism , Polyphenols/metabolism
2.
J Therm Biol ; 109: 103319, 2022 Oct.
Article En | MEDLINE | ID: mdl-36195387

This study evaluated the effect of climate change on andrological parameters of beef bulls raised under tropical, subtropical, and temperate conditions. Bull ejaculates were collected to evaluate seminal quality parameters, sperm membrane integrity, and redox status (SOD; GPx; GSH; GRx; CARB; DCF; and SOD/GPx ratio). Bulls located in the temperate region showed a higher sperm motility rate and percentage of viable sperm (P < 0.05). When evaluating regions independently, we observed a lower GPx activity from animals in the tropical region (P < 0.05). In contrast, we found that SOD and GRx activities, GSH content, and CARB oxidative levels were higher in the tropical region, while oxidation values of DCF were lower (P < 0.05). Braford bulls showed higher CARB and DCF levels (1.23 ± 0.61 nmol/mg and 1453.60 ± 828.63 nmol/mg, respectively) compared to Hereford bulls (1.00 ± 0.43 nmol/mg and 1138.70 ± 423.24 nmol/mg, respectively) in the temperate region. However, Nellore bulls showed higher DCF levels (650.50 ± 401.53 nmol/mg) than Braford bulls (409.40 ± 286.97 nmol/mg). In addition, the SOD/GPx ratio was lower in Braford (12.44 ± 7.64 U/mg) compared to Nellore bulls in tropical conditions (87.25 ± 2.83 U/mg). A positive correlation was found in temperate conditions between DCF levels, SOD, and GRx activities (0.51, 0.58; P < 0.01, respectively), as well as in subtropical conditions between DCF levels and GRx activity (0.53; P < 0.01). A negative correlation between the temperature-humidity index and CARB content was found in subtropical and tropical regions (-0.44; P < 0.01). We concluded that Braford breeds showed lower seminal motility, DCF contents and SOD/GPx ratios compared to Nellore bulls in tropical climate conditions. Finally, in temperate environmental conditions, Braford bulls also showed lower seminal motility but higher levels of CARB and DCF contents compared to Hereford bulls. Therefore, the existence of climatic differences between the temperate and tropical regions evaluated affected Braford bulls' seminal motility and seminal redox homeostasis.


Semen , Sperm Motility , Animals , Cattle , Male , Oxidation-Reduction , Semen Analysis/veterinary , Spermatozoa , Superoxide Dismutase , Tropical Climate
3.
Nutr Neurosci ; 25(10): 2066-2076, 2022 Oct.
Article En | MEDLINE | ID: mdl-34076555

INTRODUCTION: Polyphenols are compounds found in plants that have been extensively studied due to the health benefits of its consumption in adulthood. Meanwhile, recent evidence suggests that polyphenol consumption during pregnancy may not be safe for the fetus. OBJECTIVE: The goal of this study was to evaluate the effect of naringenin supplementation during pregnancy on brain redox homeostasis and mitochondrial activity of the newborn rat. METHODS: Adult female Wistar rats were divided into two groups: (1) vehicle (1 mL/Kg p.o.) or (2) naringenin (50 mg/Kg p.o.). Naringenin was administered once a day during pregnancy. The offspring were euthanized on postnatal day 7, as well the dams, and brain regions were dissected. RESULTS: The offspring cerebellum was the most affected region, presenting increased activity of the mitochondrial electron transport system, allied to increased reactive species levels, lipid peroxidation, and glutathione concentration. The nitric oxide levels suffered structure-dependent alteration, with decreased levels in the pups' cerebellum and increased in the hippocampus. The offspring parietal cortex was not affected, as well as the parameters evaluated in the dams' brains. CONCLUSION: Maternal consumption of naringenin alters offspring cerebellar redox homeostasis, which could be related to adverse effects on the motor and cognitive development in the descendants.


Polyphenols , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Cerebellum , Female , Glutathione , Homeostasis , Humans , Nitric Oxide , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar
4.
Nutr Neurosci ; 25(10): 2033-2050, 2022 Oct.
Article En | MEDLINE | ID: mdl-34030611

METHODS: and results: Pregnant Wistar rats received diets enriched in soybean oil (SO) or OO during gestation/lactation. At birth, litters were subdivided into MS or intact groups. After weaning, the pups received standard chow until adulthood, when they were subjected to behavioral tasks. At PND90 biochemical analyses were performed. Maternal OO-enriched diet prevented MS-induced higher weight gain, and decreased MS-induced anhedonic behavior. Increased latency to immobility and shorter immobility time were observed in the maternal OO-enrich diet groups. Maternal OO-enrich diet groups also presented reduced reactive oxygen species and increased activity of antioxidant enzymes. In addition, this diet showed sex-specific effects, by decreasing mitochondrial mass and potential, reducing AMPK activation, and increasing synaptophysin and PSD-95 immunocontent in the DH of male rats. Early stress, on the other hand, decreased production of free radicals and decreased levels of SIRT1 in the DH of male rats. In females, OO prevented the anhedonic behavior induced by MS. CONCLUSIONS: Maternal OO-enrich diet attenuated MS-induced depressive behavior in both sexes. In addition, it affected energy metabolism in the DH of male rats, favored synaptic plasticity, and contributed to reducing pathophysiological conditions.


Depression , Energy Metabolism , Olive Oil , Sex Factors , Soybean Oil , Stress, Psychological , Animals , Female , Male , Pregnancy , Rats , AMP-Activated Protein Kinases , Antioxidants , Diet , Hippocampus , Lactation , Olive Oil/administration & dosage , Rats, Wistar , Reactive Oxygen Species , Sirtuin 1 , Soybean Oil/administration & dosage , Synaptophysin
5.
Article En | MEDLINE | ID: mdl-33946307

Research has shown the beneficial effects of naringin supplementation to adult rodents, which can ameliorate oxidative stress in disease models. However, evidence has demonstrated that polyphenol supplementation induced detrimental effects when consumed during sensitive periods of development, such as pregnancy. Therefore, we investigated the effect of maternal naringin supplementation during pregnancy on the offspring's cerebral redox status. Pregnant Wistar rats were divided into control and naringin groups and supplemented from gestational day 15 to gestational day 21. On postnatal days 1, 7, and 21, offspring were euthanized, and the prefrontal cortex, hippocampus, striatum, and cerebellum dissected. On postnatal day 1, maternal naringin supplementation positively modulated the pups' brain redox status. On postnatal day 7, a pro-oxidative milieu was observed in the offspring's striatum and cerebellum in a sex-dependent manner, even though the prefrontal cortex and hippocampus were not negatively affected. Besides, the alterations observed on postnatal day 7 did not persist up to weaning. Our findings demonstrated that the effect induced by naringin supplementation in the brain redox status differed according to the period of development in which naringin was consumed since the beneficial effects usually found in the adult rodents became detrimental when the supplementation was applied during pregnancy.


Brain , Prenatal Exposure Delayed Effects , Animals , Dietary Supplements , Female , Flavanones , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar
6.
Nutr Neurosci ; 24(10): 770-780, 2021 Oct.
Article En | MEDLINE | ID: mdl-31610769

Introduction: Caloric restriction (CR) has been proven to promote a series of health benefits from yeast to primates. Nowadays, increasing rates of obesity certainly encourage researchers to evaluate CR effects and establish it as a therapeutic approach. Maternal obesity is also a concern, and studies in the developmental origins of health and disease (DOHaD) have shown the importance of interventions during pregnancy, especially those involving maternal nutrition. On the other hand, undernutrition during pregnancy leads to increased weight gain, disturbed feeding behavior and dysfunctional metabolism in adulthood.Methods: In this way, we utilized moderate CR (20% compared to control consumption) in pregnant Wistar rats as intervention, with malnutrition control by micronutrients supplementation. We assessed CR effects on offspring's developmental milestones, feeding behavior, exploratory behavior, and memory on adolescence (PND21) and adulthood (PND60).Results: We did not find alterations on litter size or birth weight, although CR pups were leaner at adult ages. Importantly, no delay in development was observed. Besides, female pups showed earlier suction reflex and male pups showed earlier response to the negative geotaxis. CR pups also showed less preference for palatable food (Froot Loops®) at adult age, which could be decisive on obesity tendency. Locomotor activity was increased by CR on PND60 and there was no effect on memory at all.Discussion: Our results on development and behavior demonstrate that gestational CR may be a helpful health strategy if malnutrition is well controlled, with potential clinical impact.


Caloric Restriction , Feeding Behavior , Adult , Animals , Dietary Supplements , Female , Humans , Male , Micronutrients , Pregnancy , Rats , Rats, Wistar
7.
J Nutr Biochem ; 87: 108525, 2021 01.
Article En | MEDLINE | ID: mdl-33065257

Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta (Aß) peptide, which induces synaptic dysfunction, alteration of intracellular signaling pathways, hyperphosphorylation of the Tau protein, and cognitive impairment. Genistein, one of the major isoflavones present in soy and soy products, has been shown to modulate some of the pathogenic events associated with the neurodegeneration process. However, its underlying mechanisms remain to be clarified. Therefore, the objectives of the present study were to evaluate the ability of genistein to protect against Aß1-42-induced cognitive impairment in rats and to elucidate some of the possible mechanisms involved in its neuroprotective effects in the hippocampus. Male Wistar rats received bilateral intracerebroventricular infusions of Aß1-42 (2 nmol) and genistein 10 mg/kg orally for 10 days. The Aß-infused animals showed significant impairment of memory, which was accompanied by the following neurochemical alterations in the hippocampus: decreased levels of the synaptic proteins synaptophysin and postsynaptic density protein 95 (PSD-95), hyperphosphorylation of Tau with increased activation of glycogen synthase kinase-3ß and c-Jun N-terminal kinase, and inactivation of ERK. Treatment with genistein improved Aß-induced cognitive impairment by attenuation of synaptotoxicity, hyperphosphorylation of Tau, and inactivation of ERK. Furthermore, treatment with this soy isoflavone did not cause systemic toxicity. These findings provide further evidence of the neuroprotective effect of genistein in an in vivo model of Aß toxicity and, importantly, extend the current knowledge concerning the mechanisms associated with the neuroprotective effects of this compound in the hippocampus.


Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/drug therapy , Genistein/therapeutic use , Hippocampus/drug effects , Neuroprotective Agents/therapeutic use , tau Proteins/metabolism , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Male , Phosphorylation/drug effects , Rats , Rats, Wistar
8.
Neurosci Lett ; 741: 135454, 2021 01 10.
Article En | MEDLINE | ID: mdl-33166634

Mother-pup interactions are extremely important to offspring survival and growth. The goal of this study was to evaluate the influence of prenatal and neonatal interventions on maternal care, analyzing the effect of maternal exercise, as a healthy intervention, and also the litter size reduction, a model that has been widely used to study early overfeeding in rats. Female Wistar rats were divided into 1) sedentary, and 2) swimming exercise for four weeks, starting one week before mating (5 days/week, 30 min/session). One day after birth, the litter was culled to 8 pups (normal) or 3 pups (small) per dam, yielding control and overfed subgroups for each maternal group, respectively. From postnatal days 2-9 the litter was observed 5 periods a day, to evaluate maternal behavior. Litter reduction caused important alterations in maternal behavior, reducing the total time out of the nest and increasing the frequency of maternal care and lactation in several observation periods, justifying the increased pup's weight gain already demonstrated by this animal model. The practice of maternal exercise did not prevent, but cause the less intensive frequency of non-maternal behavior and lactation in arched-back position, induced by the reduction of litter size. These data demonstrated that small litter size altered maternal behavior, and gestational exercise does not influence significantly these changes.


Maternal Behavior , Physical Conditioning, Animal , Animals , Female , Lactation , Litter Size , Male , Pregnancy , Rats, Wistar
9.
Int J Dev Neurosci ; 80(6): 512-527, 2020 Oct.
Article En | MEDLINE | ID: mdl-32619317

Exposure to environmental factors can program the metabolism, conferring resistance or increasing the risk to chronic disease development in childhood and adulthood. In this sense, lactation is an important period in this window of development. Herein, we investigated the effect of early weaning on neurochemical and behavioral changes in offspring at weaning and adulthood. Female and male pups were divided into four groups: (1) Control weaning (weaning on the PND21, pups were kept with the biological mother); (2) Early Weaning Bromocriptine group (EWB) (pharmacological weaning on PND16); (3) Early Weaning Cross-Fostering group (EWCF) (pups housed with a foster mother on PND16 up to PND21); (4) Early Weaning Without Care group (EWWC) (weaning on PND16, maternal separation). Weight control of pups was recorded from postnatal Day 16 to 59. On the 21st day, part of the pups was euthanized and the hippocampus and hypothalamus were removed for biochemical evaluation. The remaining pups were submitted to behavioral tests on the 60th postnatal day. Early weaning reduced the pups' body weight, in a sex-dependent way. At 60 days of age, male pups of EWCF and EWWC groups have lower body weight compared to control male, and female body weight was lower than male pups. In relation to biochemical changes in the brain, weaning altered the levels of oxidants, increased the enzymatic activity of superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as induced lipid peroxidation. Weaning was also able to alter long-term memory and induce anxious behavior in pups. Our results demonstrate that the different types of early weaning changed the parameters of redox status in the hippocampus and hypothalamus of pups (21 days old), suggesting a prooxidative profile, in addition, to alter learning/memory and inducing an anxious behavior in male offspring (60 days old).


Hippocampus/metabolism , Hypothalamus/metabolism , Maternal Deprivation , Weaning , Age Factors , Animals , Animals, Newborn , Female , Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Male , Motor Activity/physiology , Oxidation-Reduction , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
10.
J Dev Orig Health Dis ; 11(5): 521-532, 2020 10.
Article En | MEDLINE | ID: mdl-32631472

The Developmental Origins of Health and Disease (DOHaD) states that intrauterine maternal environment influences postnatal life by programming offspring's metabolism. Intrauterine milieu induced by exercise during pregnancy promotes long-lasting benefits to the offspring's health and seems to offer some resistance against chronic diseases in adult life. Alzheimer's disease is a public health concern with limited treatment options. In the present study, we assessed the potential of maternal exercise during pregnancy in long-term programming of young adult male rat offspring's cerebellar metabolism in conferring neuroprotection against amyloid-ß (Aß) neurotoxicity. Female Wistar rats were submitted to a swimming protocol 1 week prior mating and throughout pregnancy (five sessions/a week lasting 30 min). Aß oligomers were infused bilaterally in the brain ventricles of 60-day-old male offspring. Fourteen days after surgery, we measured parameters related to redox state, mitochondrial function, and the immunocontent of proteins related to synaptic function. We found that maternal exercise during pregnancy attenuated several parameters in the offspring's male rat cerebellum, such as the reactive species rise, the increase of inducible nitric oxide synthase immunocontent and tau phosphorylation induced by Aß oligomers, increased mitochondrial fission indicated by dynamin-related protein 1 (DRP1), and protein oxidation identified by carbonylation. Strikingly, we find that maternal exercise promotes changes in the rat offspring's cerebellum that are still evident in young adult life. These favorable neurochemical changes in offspring's cerebellum induced by maternal exercise may contribute to a protective phenotype against Aß-induced neurotoxicity in young adult male rat offspring.


Amyloid beta-Peptides/metabolism , Cerebellum/pathology , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/prevention & control , Animals , Cerebellum/metabolism , Disease Models, Animal , Female , Humans , Male , Oxidation-Reduction , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
11.
Neuroscience ; 437: 196-206, 2020 06 15.
Article En | MEDLINE | ID: mdl-32387646

Physical exercise practice has been increasingly recommended in the prevention and treatment of chronic diseases, causing a positive effect from body weight/fat loss to improved cognitive function. Maternal exercise seems to induce the same positive lifelong adaptations to the offspring. We hypothesized that maternal exercise can prevent redox imbalance in adult offspring's hippocampus exposed to a high-fat diet (HFD). Female Wistar rats were divided into three groups before and during pregnancy: (1) sedentary, (2) swimming exercise, and (3) swimming exercise with overload. On 60 days of age, the male pups were divided into standard diet or HFD for one month, yielding normal and HFD subgroups for each maternal condition. Maternal interventions did not alter gestational parameters, birth outcomes, and offspring weight gain from weaning to 90 days of age. The HFD consumption increased body fat, which was not prevented by maternal exercise. Serum glucose levels were increased by HFD, an effect that was prevented by unload maternal exercise. In the hippocampus, both maternal exercise intensities could increase antioxidant defense. Hippocampal redox homeostasis was impaired by HFD, causing increased superoxide levels, which was prevented by exercise without load, while overload caused only a reduction of the effect. In summary, the practice of swimming exercise without overload during pregnancy seems to be more beneficial when evaluated in animal model, preventing HFD induced redox imbalance and increasing antioxidant defense while overload swimming exercise during pregnancy demonstrated a negative effect on offspring submitted to HFD consumption.


Diet, High-Fat , Prenatal Exposure Delayed Effects , Animals , Body Weight , Diet, High-Fat/adverse effects , Female , Hippocampus , Male , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar
12.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Article En | MEDLINE | ID: mdl-32077406

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Cerebellum/enzymology , Citric Acid Cycle/drug effects , Dietary Supplements , Flavanones/administration & dosage , Maternal Nutritional Physiological Phenomena , Animals , Citrate (si)-Synthase/drug effects , Female , Isocitrate Dehydrogenase/drug effects , Ketoglutarate Dehydrogenase Complex/drug effects , Malate Dehydrogenase/drug effects , Molecular Docking Simulation , Pregnancy , Rats , Rats, Wistar
13.
Support Care Cancer ; 28(2): 867-876, 2020 Feb.
Article En | MEDLINE | ID: mdl-31165336

PURPOSE: The aim of the present study was to compare the effect of intraoral (IO) and extraoral (EO) diode laser irradiation on oral mucositis (OM) induced by 5-fluorouracil (5-FU) in rats. METHODS: Animals (n = 78) were divided into the following groups: negative control (NC), positive control (PC), IO 6 J/cm2, EO with 6 J/cm2 (EO 6 J/cm2), and 12 J/cm2 (EO 12 J/cm2). OM was induced with an intraperitoneal injection of 5-FU and scarification of the buccal mucosa. Over the following 14 days, animals received photobiomodulation (PBM) daily. Clinical and histological evaluation was done by scores at days 8, 10, and 14. The redox state was evaluated by reactive species levels, antioxidant network, and immunohistochemistry analysis. RESULTS: Clinically, on day 8, PBM groups showed lower scores of OM with EO 6 J/cm2 presenting a significantly lower degree compared to PC (p < 0.05). On days 10 and 14, all PBM groups exhibited improvement of OM compared to PC (p < 0.01). On day 8, all PBM groups exhibited an accelerated healing process compared to PC (p < 0.01) and reduction of reactive species (p < 0.001). Also, all PBM groups demonstrated higher levels of antioxidant GPx compared to PC (p < 0.001). Analysis of nitrotyrosine revealed that on day 14, this protein damage marker was significantly reduced in the EO 6 J/cm2 group (p > 0.05). CONCLUSIONS: An EO diode laser protocol promoted positive effects in the clinical, histopathological, and redox state in OM induced by 5-FU in rats. Among the EO protocols, EO 6 J/cm2 showed the most encouraging results.


Drug-Related Side Effects and Adverse Reactions/therapy , Low-Level Light Therapy/methods , Stomatitis/chemically induced , Stomatitis/therapy , Animals , Drug Therapy , Humans , Male , Oxidative Stress , Rats , Stomatitis/pathology
14.
Int J Dev Neurosci ; 79: 1-10, 2019 Dec.
Article En | MEDLINE | ID: mdl-31593754

Developmental origins of health and disease (DOHaD) is a field of biological science dedicated to investigating how different interventions during development affect an individual's life. Diet is an essential way to interact with the environment, and during pregnancy affects not only the mother but also can impact the next generations. One of these interventions is caloric restriction (CR), which has shown positive redox modulation in rats' offspring when malnutrition is responsibly controlled. Considering that mitochondrial metabolism is determinant for redox status, we investigated parameters related to mitochondrial functionality and reactive species levels in offspring's brain from rats delivered to pregnant caloric restricted dams. Therefore, pregnant rats were divided between control (ad libitum food) and CR (20% food restriction plus micronutrients supplementation) groups, and offspring's brain was analyzed on post-natal days (PND) 0, 7, 21, and 60. Mitochondrial function, as well as superoxide content, were decreased in most brain areas on PND0 and went through adaptation, showing increased mass and membrane potential in adulthood. Concerning mitochondrial electron transport system (METS), the most affected area was the cerebellum, which was impaired at birth and activated at adulthood. In conclusion, our results show that gestational CR promotes adaptation from impaired mitochondrial parameters at birth, improving mitochondrial function when compared to control, without increasing superoxide generation, at adult age. More studies are necessary in order to support the use of CR as a clinical approach.


Brain/metabolism , Caloric Restriction , Maternal Nutritional Physiological Phenomena/physiology , Mitochondria/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Embryonic Development/physiology , Female , Pregnancy , Rats , Rats, Wistar , Superoxides/metabolism
15.
J Clin Med ; 8(9)2019 Sep 02.
Article En | MEDLINE | ID: mdl-31480808

Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics-metabolomics). The data showed that Adck2+/- mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.

16.
Z Naturforsch C J Biosci ; 74(9-10): 279-282, 2019 Sep 25.
Article En | MEDLINE | ID: mdl-31393836

Overexpression of aromatase in breast cancer cells may substantially influence its progression and maintenance. In this sense, the inhibition of aromatase is a key target for the treatment of breast cancer in postmenopausal women. Although several flavonoids had already demonstrated the capacity of inhibiting aromatase activity, the role of biflavonoids as aromatase inhibitors is poorly studied. In this work, the biflavonoids isolated from Garcinia gardneriana, morelloflavone (1), Gb-2a (2) and Gb-2a-7-O-glucose (3) were submitted to in vitro assay to evaluate the aromatase modulatory effect. As results, it was demonstrated that all biflavonoids were able to inhibit the enzyme, with IC50 values ranging from 1.35 to 7.67 µM. This demonstrates that biflavonoids are an important source of scaffolds for the development of new aromatase inhibitors, focusing on the development of new anticancer agents.


Aromatase Inhibitors/chemistry , Biflavonoids/chemistry , Garcinia/chemistry , Plant Extracts/chemistry
17.
J Nutr Biochem ; 67: 138-148, 2019 05.
Article En | MEDLINE | ID: mdl-30903960

Caloric restriction (CR) improves health and life span in animal models. Although CR effects in adult life are well described, little is known about effects on offspring when applied during gestation. Pregnancy is a remarkable period of life, alterations in this stage lead to lifelong consequences, some of which, associated to redox unbalance. Furthermore, gestational overweight is a growing issue that can lead to detrimental outcomes. To address this issue, we divided pregnant rats into control (ad libitum food) and CR groups, which received 20% less food than control. Micronutrients consumption was equalized between groups by oral gavage. Cerebellum, prefrontal cortex, hippocampus, and hypothalamus were evaluated on post-natal day (PND) 0, 7, 21, and 60. We observed increased oxidants content on PND0 in all brain structures, except for the cerebellum. Key enzymatic antioxidant defenses showed decreased activity on PND0. Interestingly, on PND60, we observed a positive modulation of most antioxidant enzymes, especially on the prefrontal cortex and hippocampus. Non-enzymatic antioxidant defenses were decreased at birth and increased during development and adult age. Lipid peroxidation was increased at birth on most structures, and the effect was abolished thereafter. In the prefrontal cortex, lipid peroxidation was unaltered at birth and diminished thereafter, while protein oxidation was increased on PND0 and decreased on PND60. Protein oxidation was also decreased in the cerebellum at adult age. Our results shown controlled gestational CR to improve antioxidant defenses and protect offspring's brain from oxidative stress, especially in adulthood, as a result of developmental metabolic programming.


Brain/metabolism , Caloric Restriction , Aging , Animals , Animals, Newborn , Antioxidants/metabolism , Female , Homeostasis , Lipid Peroxidation , Maternal Nutritional Physiological Phenomena , Oxidants/metabolism , Pregnancy , Pregnancy Rate , Rats, Wistar , Weight Gain
18.
Nutrition ; 60: 230-234, 2019 04.
Article En | MEDLINE | ID: mdl-30682544

OBJECTIVES: The objective of this study was to compare the relationship between the Healthy Eating Index and oxidative stress parameters in adolescent athletes and non-athletes. METHODS: A cross-sectional study was carried out with 18 adolescent male and female volleyball athletes who were paired with 15 adolescent non-athletes. Body fat percentage, food intake, free radical production, antioxidant enzyme activity, and thiol and protein damage were measured. RESULTS: In the Healthy Eating Index assessment, the food quality of 72.7% of the sample was classified as low, and no participant was found to have good food quality. The mean intake of vitamins A and E was below recommendations in both groups and sexes; however vitamin C intake was appropriate for the age group. Increased free radical production was observed in the athletes' erythrocytes (p<0.001), accompanied by lower levels of plasma reduced glutathione (p = 0.01), but there were no correlations between Healthy Eating Index and oxidative stress parameters or between body composition, vitamin A, C and E intake and oxidative stress. CONCLUSIONS: The sample's diet quality was classified as low and, despite the fact that there was greater production of free radicals in the athletes' erythrocytes and plasma, in addition to lower levels of plasma reduced glutathione , there was no correlation between Healthy Eating Index and oxidative stress.


Antioxidants/metabolism , Athletes/statistics & numerical data , Diet, Healthy , Oxidative Stress/physiology , Volleyball/physiology , Adolescent , Body Composition , Cross-Sectional Studies , Diet/statistics & numerical data , Female , Humans , Male , Nutritional Status , Vitamin A/analysis , Vitamin E/analysis
19.
Mol Neurobiol ; 56(3): 2022-2038, 2019 Mar.
Article En | MEDLINE | ID: mdl-29982984

Alzheimer's disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function. Maternal lifestyle, including regular exercise during pregnancy, has also been shown to influence fetal development and disease susceptibility in adulthood through fetal metabolism programming. Here, we investigated the potential neuroprotective role of regular maternal swimming, before and during pregnancy, against amyloid-ß neurotoxicity in the adult offspring. Behavioral and neurochemical analyses were performed 14 days after male offspring received a single, bilateral, intracerebroventricular (icv) injection of amyloid-ß oligomers (AßOs). AßOs-injected rats of the sedentary maternal group exhibited learning and memory deficits, along with reduced synaptophysin, brain-derived neurotrophic factor (BDNF) levels, and alterations of mitochondrial function. Strikingly, the offspring of the sedentary maternal group had AßOs-induced behavioral alterations that were prevented by maternal exercise. This effect was accompanied by preventing the alteration of synaptophysin levels in the offspring of exercised dams. Additionally, offspring of the maternal exercise group exhibited an augmentation of functional mitochondria, as indicated by increases in mitochondrial mass and membrane potential, α-ketoglutarate dehydrogenase, and cytochrome c oxidase enzymes activities. Moreover, maternal exercise during pregnancy induced long-lasting modulation of fusion and fission proteins, Mfn1 and Drp1, respectively. Overall, our data demonstrates a potential protective effect of exercise during pregnancy against AßOs-induced neurotoxicity in the adult offspring brain, by mitigating the neurodegenerative process triggered by Alzheimer-associated AßOs through programming the brain metabolism.


Amyloid beta-Peptides , Brain/metabolism , Cognition Disorders/prevention & control , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Female , Male , Mitochondria/metabolism , Pregnancy , Rats , Rats, Wistar , Synaptophysin/metabolism
20.
Int J Dev Neurosci ; 71: 146-155, 2018 Dec.
Article En | MEDLINE | ID: mdl-30232036

Prenatal and early postnatal environments can permanently influence health throughout life. Early overnutrition increases the risk to develop chronic diseases. Conversely, the intake of flavonoids and exercise practice during pregnancy seem to promote long-term benefits to offspring. We hypothesized that benefic interventions during pregnancy could protect against possible postnatal neurochemical alterations caused by overnutrition induced by reduced litter size. Female Wistar rats were divided into four groups: (1) sedentary + vehicle, (2) sedentary + naringenin, (3) swimming exercise + vehicle, and (4) swimming exercise + naringenin. One day after birth, the litter was culled to 8 pups (control) or 3 pups (overfed) per dam, yielding control and overfed subgroups for each maternal group. Serum of 21-days-old pups was collected, also the cerebellum, hippocampus, and hypothalamus were dissected. Litter size reduction increased fat mass and enhanced body weight. Maternal interventions, when isolated, caused reduced glucose serum levels in offspring nurtured in control litters. In the cerebellum, reducing the litter size decreased the activity of thioredoxin reductase, which was prevented by maternal supplementation with naringenin. Hippocampus and hypothalamus have shown altered antioxidant enzymes activities in response to litter size reduction. Interestingly, when maternal exercise and naringenin supplementation were allied, the effect disappeared, suggesting a concurrent effect of the two maternal interventions. In conclusion, exercise or naringenin supplementation during pregnancy can be important interventions for combating the increasing rates of overweight during the infancy and its related neurochemical changes, especially when applied isolated.


Animal Nutritional Physiological Phenomena , Antioxidants/pharmacology , Brain/metabolism , Litter Size/physiology , Physical Conditioning, Animal/physiology , Weaning , Animals , Animals, Newborn , Body Weight/physiology , Estrogen Antagonists/administration & dosage , Female , Flavanones/administration & dosage , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Male , Overnutrition/metabolism , Oxidants/metabolism , Pregnancy , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Swimming/physiology
...